

Mike Ronan, Manager Wetlands, Department of Environment and Science

The catchment, from headwaters to floodplains.

Connectivity can be...

Ultimately everything is connected...

Catchment values

How do we derive benefits from catchments?

Clean Water

•Ecosystem services on the GBR

•(Stoeckl et al 2011; UNEP-WCMC 2011; GBRMPA 2012)

Supporting	Regulating	Provisioning	Cultural
 Nutrient cycling/food webs Habitat provision Ecosystem health (resilience) Primary production Pollination Soil formation 	 Coastal protection/flood control Water regulation/purificatio n Waste treatment Erosion control & soil stabilisation Carbon cycling Recharge/discharge Temperature and pH regulation Pest/disease regulation 	 Water Food & fibre Raw materials Genetic materials Fishing Aquaculture Ports and shipping Aquarium and ornamental trade Energy resources (oil reserves) Medicinal products 	 Recreation Tourism Cultural heritage & identity Research opportunities Icon status Aesthetic value Education Existence/bequest value Spiritual, religious and/or personal connection Inspiration

Whole of catchment management framework

Stages:

- Building understanding

- Defining objectives
- Determining threats/pressures and capacity/constraints
- Options for intervention and implementation.

Integrates the following:

- Science synthesis and research for knowledge gaps
- Monitoring, evaluation, reporting and improvement
- Communication, capacity building, education, participation and awareness.

Water processes

Water processes in the landscape

Water processes

Ecology

Components and processes

The ecology of catchments is made up of many parts or ecosystem components. The interaction between these parts - processes. Ecosystems are complex, and components can interact with each other in a variety of ways.

It is important to remember that components and processes can alter over time in response to changes in inputs, conditions, or pressures and threats.

Water

Water has many characteristics which can influence the components and processes of a catchment.

The chemistry and energy of water can determine how living organisms use an area, and can affect how water moves in and out of a catchment.

The turbidity or clarity of water affects light availability for aquatic biota such as plants and algae. Nutrients and pollutant concentrations within water affect the lifecycles of plants and animals.

A healthy catchment is dependent on healthy water.

Source: Gayle Stewart

What is "Walking the Landscape"

- A systematic and transparent science synthesis process that integrates existing data such as geology, topography, hydrology, soils, vegetation, land use and hydrological features with a wealth of catchment information and knowledge from a range of experts, through facilitated workshops, promoting shared understanding.
- Takes its name from the facilitated workshop process where a **multidisciplinary team** including natural resource managers, local and state governments, community groups, industry, traditional owners, ecologists, engineers and universities, "walk the catchment", in a virtual sense, using their knowledge of the catchment.

What is "Walking the Landscape"

Minimal value judgement.

- Information is captured in a form which can be updated (maps, tables, conceptual models) and displayed in a way which is easily understood and links directly to underlying data (map journals, on-line mapping and conceptual models).
- All products are checked at multiple stages and approved for release.
- Can be run at any scale but should capture whole of hydrological system which affects an asset.
- Developed by the Queensland Wetlands Program. Significant input form GBRMPA and Queensland Herbarium

How Water Moves

how water moves

Walking the Landscape

Catchment Stories

Management Tools - Managing farms for healthy catchments

•The Ramsar Convention

The Convention on Wetlands of International Importance (Ramsar Convention) - aims to conserve wetlands worldwide

•Queensland's 5 Ramsar sites

Criteria for listing

•What are Ramsar criteria?

Ramsar sites are selected for listing based on the Ramsar criteria.

There are nine criteria based on whether

- contain representative, rare or unique wetland types, OR
- are of international importance for conserving biological diversity.

The Ramsar Convention in Australia

•The Australian National Guidelines for Ramsar Wetlands

The Australian Government provides a framework for implementing the Ramsar Convention.

The framework includes a number of guidelines:

•1. Describing ecological character

•2. Boundary description and mapping

•3. Notification of change or potential change in ecological character

•4. Site nomination

•Matters of National Environmental Significance

•Significant impact criteria

An action is likely to have a significant impact on ecological character if it may result in:

- 1. Areas of the wetland being destroyed or substantially modified
- A substantial and measurable change in the hydrological regime of the wetland
- 3. The habitat or lifecycle of native species dependant upon the wetland being seriously affected
- 4. A substantial and measurable change in the water quality of the wetland
- 5. An invasive species that is harmful to the ecological character of the wetland being established in the wetland

Moreton Bay

- Pumicestone Catchment Story
- <u>https://www.youtube.com/watch?v=0F2hy-EQNBg&feature=youtu.be</u>